Phys 401, Spring 2021

Homework \#0, Due Friday, 29 January, 2021
These are physics and math skills that you will need for Phys 401 . You do not need to derive any of these results. However, you should be able to utilize all of these math skills in a quiz or exam situation. Hence, please review any concepts that present difficulty. Complete the following by hand (no assistance from computers!):

1. The imaginary unit is $i=\sqrt{-1}$, and satisfies $i^{2}=-1$. Use the Euler formula to expand $e^{i \theta}$ for real θ.
2. Given $z=x+i y$, where x and y are real, find expressions for z^{*} (the complex conjugate), $|z|$ (the magnitude of z), and the polar angle θ for this number.
3. Given a function $f(z)=a z+b z^{2}$ with $z=x+i y$, and x, y, a and b all real, find the imaginary part of the function $\operatorname{Im}[f]$ in terms of only real quantities.
4. Given the three Cartesian unit vectors \hat{x}, \hat{y}, and \hat{z}, calculate the following:
a. $\hat{x} \times \hat{y}$
b. $|\hat{x}|$
c. $\hat{x} \cdot \hat{y}$
5. Given the vectors $\vec{r}=\left(r_{x}, r_{y}, r_{z}\right)$ and $\vec{s}=\left(s_{x}, s_{y}, s_{z}\right)$, calculate the cross product vector $\vec{r} \times \vec{s}$ in terms of its Cartesian components.
6. Find the eigenvalues and eigenvectors of this matrix: $\overline{\bar{A}}=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$. In other words find all the λ and \vec{v} that satisfy $\overline{\bar{A}} \vec{v}=\lambda \vec{v} \quad$ [For a review of linear algebra, see Appendix A of Griffiths QM.]
7. What is the determinant of $\overline{\bar{A}}$ and how is it related to the eigenvalues?
8. What is the trace of $\overline{\bar{A}}$ and how is it related to the eigenvalues?
9. Prove that the matrix $\sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ is Hermitian.
10. State two properties of Hermitian matrices.
11. What does it mean if two vectors are "linearly independent"? What does it mean to have a set of vectors that "span a space"?
12. Given a well-behaved scalar function of position $\chi(\vec{r})$ (e.g. the temperature distribution on the surface of the earth), what can we say is always true about the curl of the gradient of χ ? (i.e. $\vec{\nabla} \times(\vec{\nabla} \chi)$)
13. Given a vector field $\vec{F}=k\left(x, 2 y^{2}, 3 z^{3}\right)$, where k is a constant, calculate its curl, $\nabla \times \vec{F}$ in Cartesian coordinates. What is the physical interpretation of this vector curl?
14. Calculate the vector divergence of \vec{F}, namely $\vec{\nabla} \cdot \vec{F}$, in Cartesian coordinates. What is the physical interpretation of this vector divergence?
15. What is the general solution $x(t)$ to the second-order linear differential equation $\ddot{x}=$ $-\omega^{2} x$, where ω is a real positive number and $\ddot{x}=d^{2} x / d t^{2}$?
16. What is the general solution $x(t)$ to the second-order linear differential equation $\ddot{x}=$ $+k^{2} x$, where k is a real positive number?
17. Given $\ln (y)=b \ln (x)$, where b is a constant, find y as a function of $x, y(x)$.
18. Evaluate $I=\int_{-2}^{3} 5 x d x$.
19. Solve in closed form the indefinite integral $\int x \sin (x) d x$ by employing "integration by parts".
20. Expand $y(x)=\ln (1+x)$ to second order for $x \ll 1$.
21. Write the series expansion for $y(x)=\frac{1}{1-x}$ valid for $-1<x<1$.
22. Recall the Dirac delta function $\delta(x)$, which is defined through the expression $\int_{-\infty}^{\infty} f(x) \delta(x-a) d x=f(a)$ for any arbitrary (but well-behaved) function $f(x)$. Describe in words the properties of the delta function.
23. The Fourier transform of a function $f(x)$ can be written as $\tilde{f}(k)=$ $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x$. What is the Fourier transform of the Dirac delta function $\delta(x)$? Interpret the result.
24. Given that $\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}}$, solve for the integral $\int_{-\infty}^{\infty} e^{-a x^{2}} e^{-i k x} d x$ by the "completing the square" in the exponent trick. (Answer: $\sqrt{\frac{\pi}{a}} e^{-k^{2} / 4 a}$)
25. Using the figure below, express the spherical unit vectors $\hat{e}_{r}, \hat{e}_{\theta}$ and \hat{e}_{ϕ} in terms of the Cartesian unit vectors $\hat{x}, \hat{y}, \hat{z}$ for a general point in space labeled by (r, θ, ϕ).
26. Write down the differential volume element $d^{3} r$ in spherical coordinates. Use the figure below for definition of the spherical coordinates.

