Phys 401, Spring 2021

Homework #0, Due Friday, 29 January, 2021

These are physics and math skills that you will need for Phys 401. You <u>do not</u> need to derive any of these results. However, you should be able to utilize all of these math skills in a quiz or exam situation. Hence, please review any concepts that present difficulty. Complete the following <u>by hand</u> (no assistance from computers!):

- 1. The imaginary unit is $i = \sqrt{-1}$, and satisfies $i^2 = -1$. Use the Euler formula to expand $e^{i\theta}$ for real θ .
- 2. Given z = x + iy, where x and y are real, find expressions for z^* (the complex conjugate), |z| (the magnitude of z), and the polar angle θ for this number.
- 3. Given a function $f(z) = a z + bz^2$ with z = x + iy, and x, y, a and b all real, find the imaginary part of the function Im[f] in terms of only real quantities.
- 4. Given the three Cartesian unit vectors \hat{x} , \hat{y} , and \hat{z} , calculate the following:
 - a. $\hat{x} \times \hat{y}$
 - b. $|\hat{x}|$
 - c. $\hat{x} \cdot \hat{y}$
- 5. Given the vectors $\vec{r} = (r_x, r_y, r_z)$ and $\vec{s} = (s_x, s_y, s_z)$, calculate the cross product vector $\vec{r} \times \vec{s}$ in terms of its Cartesian components.
- 6. Find the eigenvalues and eigenvectors of this matrix: $\bar{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. In other words find all the λ and \vec{v} that satisfy $\bar{A}\vec{v} = \lambda\vec{v}$ [For a review of linear algebra, see Appendix A of Griffiths QM.]
- 7. What is the determinant of $\overline{\overline{A}}$ and how is it related to the eigenvalues?
- 8. What is the trace of \overline{A} and how is it related to the eigenvalues?
- 9. Prove that the matrix $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ is *Hermitian*.
- 10. State two properties of Hermitian matrices.
- 11. What does it mean if two vectors are "linearly independent"? What does it mean to have a set of vectors that "span a space"?
- 12. Given a well-behaved scalar function of position $\chi(\vec{r})$ (e.g. the temperature distribution on the surface of the earth), what can we say is always true about the curl of the gradient of χ ? (i.e. $\vec{\nabla} \times (\vec{\nabla} \chi)$)
- 13. Given a vector field $\vec{F} = k(x, 2y^2, 3z^3)$, where k is a constant, calculate its curl, $\nabla \times \vec{F}$ in Cartesian coordinates. What is the physical interpretation of this vector curl?
- 14. Calculate the vector divergence of \vec{F} , namely $\vec{\nabla} \cdot \vec{F}$, in Cartesian coordinates. What is the physical interpretation of this vector divergence?

- 15. What is the general solution x(t) to the second-order linear differential equation $\ddot{x} = -\omega^2 x$, where ω is a real positive number and $\ddot{x} = d^2 x/dt^2$?
- 16. What is the general solution x(t) to the second-order linear differential equation $\ddot{x} = +k^2x$, where k is a real positive number?
- 17. Given ln(y) = b ln(x), where b is a constant, find y as a function of x, y(x).
- 18. Evaluate $I = \int_{-2}^{3} 5x \, dx$.
- 19. Solve in closed form the indefinite integral $\int x \sin(x) dx$ by employing "integration by parts".
- 20. Expand $y(x) = \ln(1 + x)$ to second order for $x \ll 1$.
- 21. Write the series expansion for $y(x) = \frac{1}{1-x}$ valid for -1 < x < 1.
- 22. Recall the Dirac delta function $\delta(x)$, which is defined through the expression $\int_{-\infty}^{\infty} f(x)\delta(x-a)dx = f(a)$ for any arbitrary (but well-behaved) function f(x). Describe in words the properties of the delta function.
- 23. The Fourier transform of a function f(x) can be written as $\tilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx$. What is the Fourier transform of the Dirac delta function $\delta(x)$? Interpret the result.
- 24. Given that $\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}$, solve for the integral $\int_{-\infty}^{\infty} e^{-ax^2} e^{-ikx} dx$ by the "completing the square" in the exponent trick. (Answer: $\sqrt{\frac{\pi}{a}} e^{-k^2/4a}$)
- 25. Using the figure below, express the spherical unit vectors \hat{e}_r , \hat{e}_{θ} and \hat{e}_{ϕ} in terms of the Cartesian unit vectors \hat{x} , \hat{y} , \hat{z} for a general point in space labeled by (r, θ, ϕ) .
- 26. Write down the differential volume element d^3r in spherical coordinates. Use the figure below for definition of the spherical coordinates.

